

Set No. 1

Code No: RT42022A

IV B.Tech II Semester Regular/Supplementary Examinations, April - 2018 ADVANCED CONTROL SYSTEMS

R13

(Electrical and Electronics Engineering)

Time: 3 hours

Max. Marks: 70

Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any THREE questions from Part-B *****

PART-A (22 Marks)

1.	a)	State the significance of state transition matrix.	[4]
	b)	What do you mean by principle of duality?	[4]
	c)	Explain the effect of inherent nonlinearities on static accuracy.	[4]
	d)	What are the different types of stability?	[3]
	e)	State the fundamental theorem of the calculus of variations.	[4]
	f)	What is the difference between the LQR and LQG?	[3]

<u>**PART-B**</u> (3x16 = 48 Marks)

If
$$x(0) = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$$
, then $x(t) = \begin{bmatrix} e^{-2t} \\ -2e^{-2t} \end{bmatrix}$
If $x(0) = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$, then $x(t) = \begin{bmatrix} e^{-t} \\ -e^{-t} \end{bmatrix}$ Find e^{At} and hence A [10]

3. a) Describe the controllability tests for continuous time systems. [6]
b) Convert the following state model into the Jordan canonical form and there from comment on controllability and observability.

[0 1 0]
[1 0]
[0 1 -1]

$$\dot{x}(t) = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -2 & -4 & -3 \end{bmatrix} x(t) + \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ -1 & 1 \end{bmatrix} u(t), \quad y(t) = \begin{bmatrix} 0 & 1 & -1 \\ 1 & 2 & 1 \end{bmatrix} x(t)$$
[10]

4. a) Draw a phase plane portrait of the following system, θ + θ + sinθ = 0. [8]
b) Determine the describing function for the nonlinear element described by y = x³ where x=input to the nonlinear element (Sinusoidal signal) y=output of the nonlinear element. [8]

5. a) State and explain the Lyapunovs instability theorem. [7]b) Find a Lyapunovs function for the following system

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -1 & 1 \\ 2 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
[9]

6. a) With suitable diagrams illustrate the one point is fixed end, terminal time t₁ is specified and x(t₁) free end problem and derive the necessary conditions of variational calculus. [8]
b) Find the extremals for the functional

$$J(x) = \int_0^1 [x^2(t) + \dot{x}^2(t)] dt; \ x(0) = 0, x(1) = 1$$
[8]

7. How LQG frame work can be used to design optimal controller? Explain with mathematical equations. [16]